
www.manaraa.com

Modeling
of granular

materials

519

Engineering Computations:
International Journal for Computer-

Aided Engineering and Software
Vol. 27 No. 4, 2010

pp. 519-550
# Emerald Group Publishing Limited

0264-4401
DOI 1108/02644401011044603

Received 17 January 2009
Revised 29 June 2009

19 August 2009
Accepted 28 August 2009

Three-dimensional ellipsoidal
discrete element modeling
of granular materials and

its coupling with finite
element facets

Beichuan Yan, Richard A. Regueiro and Stein Sture
Department of Civil, Environmental and Architectural Engineering,

University of Colorado at Boulder, Boulder, Colorado, USA

Abstract

Purpose – The purpose of this paper is to develop a discrete element (DE) and multiscale modeling
methodology to represent granular media at their particle scale as they interface solid deformable
bodies, such as soil-tool, tire, penetrometer, pile, etc., interfaces.
Design/methodology/approach – A three-dimensional ellipsoidal discrete element method (DEM)
is developed to more physically represent particle shape in granular media while retaining the
efficiency of smooth contact interface conditions for computation. DE coupling to finite element (FE)
facets is presented to demonstrate initially the development of overlapping bridging scale methods
for concurrent multiscale modeling of granular media.
Findings – A closed-form solution of ellipsoidal particle contact resolution and stiffness is presented
and demonstrated for two particle, and many particle contact simulations, during gravity deposition,
and quasi-static oedometer, triaxial compression, and pile penetration. The DE-FE facet coupling
demonstrates the potential to alleviate artificial boundary effects in the shear deformation region
between DEM granular media and deformable solid bodies.
Research limitations/implications – The research is being extended to couple more robustly the
ellipsoidal DEM code and a higher order continuum FE code via overlapping bridging scale methods,
in order to remove dependence of penetration/shear resistance on the boundary placement for DE
simulation.
Practical implications – When concurrent multiscale computational modeling of interface
conditions between deformable solid bodies and granular materials reaches maturity, modelers will
be able to simulate the mechanical behavior accounting for physical particle sizes and flow in the
interface region, and thus design their tool, tire, penetrometer, or pile accordingly.
Originality/value – A closed-form solution for ellipsoidal particle contact is demonstrated in this
paper, and the ability to couple DE to FE facets.

Keywords Mechanical behavior of materials, Modeling, Finite element analysis

Paper type Research paper

1. Introduction
The discrete element method (DEM) has been used to investigate the mechanical
behavior of assemblies of granular materials since the introduction of the method
(Cundall and Strack, 1979). Research results have demonstrated that the method can
simulate certain aspects of granular material response, such as strength, stiffness,
dilatancy, influence of intermediate principal stress and localized deformation, even
under conditions like low effective stress state in the Space Shuttle (Zhang, 1996, Gong,
2001). The DEM has also been found to be an extremely valuable tool to obtain the
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micromechanical details, such as fabric and structure, of granular materials
(Rothenburg and Bathurst, 1992; Ng, 1993, 1994, 1999; Ng and Fang, 1995). In addition
to the research into micromechanics of granular materials, many other practical
applications using DEM were presented in an international conference on DEMs (Cook
and Jensen, 2002). These include the formation of muck piles resulting from rock
blasting in mining, problems of particle-fluid systems such as liquefaction analysis
and wet granular flow, amongst others.

A disadvantage of the DEM is that it can lead to computational times and memory
demands beyond the capacity of many modern computers (even massively parallel
systems). This is a result of solving contact detection algorithms for many particles
(especially in three dimensions), and also the small time step required to maintain
stability for the traditional explicit central time difference scheme used to integrate the
balance of linear and angular momemtum equations for all particles. For example, in a
1 cm3 fine-grained soil volume (particle size range 1-100 mm) there could be
approximately 5 � 1012 particles, which is beyond the capacity of most modern
computers.

Part of the reason for not being able to model the flow and deformation of granular
materials in a physically based manner within one computational framework is that
the length scale of the application is usually much larger than the length scale of the
particles composing the granular material, e.g. 100 mm diameter quartz particles of
a sand sheared by a 10 cm diameter steel pile penetrating 1 m deep in the ground,
which is four orders of magnitude difference in scale (requiring around 1010 particles
to simulate). As a result, it is not feasible to simulate computationally the
heterogeneous, localized deformation, flow response in the engineering application of
interest involving granular materials using a pure particle-based materials modeling
approach.

Granular materials may transition in an instant from deforming like a solid to
flowing like a fluid and vice versa. Examples of such physical transition are the flow of
quartz grains at the tip of a driven steel pile, and the flow of agricultural grains from
the bulk top region through the bottom chute in a silo, for instance. These examples
each involve material regions where relative neighbor particle motion is ‘‘large’’
(flowing like a fluid) and regions where relative neighbor particle motion is ‘‘small’’
(deforming like a solid). This is particularly true for applications involving granular
material compression and shear by a deformable solid body, such as tire/track, tool,
cone penetrometer, or pile interfacing granular material like sand.

For certain applications, to achieve computational efficiency while maintaining high
material model resolution in spatial domains of interest, coupling discrete element (DE)
and finite element (FE) methods is one approach. This combination of FEs with DE is
especially effective for problems where standard continuum FE are only adequate to
model part of the analysis domain, whereas DE is more accurate to treat other areas.
Examples of such problems can be found in the interaction of solids and structures with
granular media, such as the pile driving process mentioned above. Treatment of overlap
between DE and the boundary of a continuum subdomain discretized with FE involves
properly transferring force, moment and energy between the two different domains.

A few approaches have coupled DE and FE for modeling deformation and flow of
dense dry granular materials accounting for the physical particle size, i.e. truly
micromechanically coupled models (Negi et al., 1999; Han et al., 2000; Kremmer and
Favier, 2001; Komodromos and Williams, 2002, 2004; Nakashima and Oida, 2004; Onate
and Rojek, 2004; Cheng et al., 2005). These methods approach the coupling issue,
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however, as a contact/interface problem between two materials (discrete particles for
granular material and FE facets for deformable solid) and not coupling different
numerical model representations of the same material (i.e. a granular material), which
an approach coupling particle and continuum representations of the same material
should do. The interface/contact problem addressed by these authors is still relevant at
the interface between particles and a deformable solid, but we focus on the problem of
resolving the granular material behavior using DE in the interface region, transitioning
to continuum FE spatially further from the interface to achieve computational
efficiency while properly representing boundary conditions (BCs) on the DE domain.

Multiscale approaches have gained attention in materials science in recent years,
especially in the research on nanoscale mechanics and materials. For lattice-structured
materials, it attempts to overcome the difficulties that arise from high demand on
computational resources and seeks to limit molecular dynamics (MD) in localized
regions where atomic-scale dynamics are important while allowing continuum
simulations everywhere else (Liu et al., 2006). Similar situations occur in the research of
granular material problems aforementioned.

The goal of this study can be divided into two parts. First, a three-dimensional (3D)
DE code is developed with the capacity to operate ellipsoidal particles with translational
and rotational degrees of freedom and to handle rigid BCs. Fundamental mechanical
behavior of particle contact in normal and tangential directions is investigated.
Numerical tests with up to several thousand particles, including isotropic, oedometer
(uniaxial strain) and triaxial compression, are performed to study macroscopically
mechanical behavior of granular material. In this research, a generic ellipsoidal particle
representation and contact resolution alogrithm are presented and implemented, which
follows the approximation of an axis-symmetric ellipsoidal shape (Wang et al., 1999; Ng
and Fang, 1995; Hopkins, 2002; Kuhn, 2003; Ng, 2004; Hopkins, 2004; Johnson et al., 2004)
At the contact between two particles, Hertz’s nonlinear elastic model is employed for the
normal behavior and Mindlin’s history-dependent stick/slip model combined with
Coulomb’s friction model is employed for the tangential behavior.

Second, a coupled multiscale modeling approach for granular materials is proposed
and implemented, numerical examples of pile penetration with artificial BC and
coupled FE facets are compared to verify the method.

An outline of the remainder of the paper is as follows: section 2 describes the
ellipsoidal DEM; section 3 presents DEM examples; section 4 describes a DE-FE facet
coupling method; section 5 presents DE-FE coupling simulations; and section 6
conclusions.

2. Ellipsoidal discrete element model
2.1 Governing equations, integration scheme and contact interface
The translational and rotational motion of ellipsoidal particles in 3D space is described
by means of standard rigid body dynamics, namely, equations of balance of linear and
angular momentum. For the ith particle we have

mi €uui ¼ F i ð1Þ

Ii
€uui ¼ M i ð2Þ

where u is the particle centroid displacement in an inertial coordinate frame, which we
define as global coordinate system – (GCS); u, the spatial orientation vector of the
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particle; m, the particle mass; I, the moment of inertia; F , the resultant force; and M ,
the resultant moment about the principal axes of inertial frame. Equation (2) holds in
GCS, but it is much more convenient to use it in a co-rotational local coordinate system
(LCS) embedded at each particle in that tensor of inertia is constant in LCS. It is
desirable to evaluate each variable of Equation (2) in LCS consistently and convert
them into GCS in calculating rotations in GCS.

A particle in a granular assembly is subjected to contact forces, external forces such
as gravity and boundary forces, and damping forces. For the ith particle the equation
of motion can be expressed including viscous damping as:

M iai þ C ivi þ P i ¼ F i ð3Þ

where M i and C i are the generalized mass and viscous damping matrices, respectively,
as:

M i ¼

mi 0 0 0 0 0
0 mi 0 0 0 0
0 0 mi 0 0 0
0 0 0 Ii 0 0
0 0 0 0 Ii 0
0 0 0 0 0 Ii

26666664

37777775 ð4Þ

C i ¼ �1M i ð5Þ

where �1 is the coefficient of mass proportional damping. ai and vi are generalized
acceleration and velocity vectors, respectively, as:

vT
i ¼ vxðiÞ; vyðiÞ; vzðiÞ; !xðiÞ; !yðiÞ; !zðiÞ

� �
aT

i ¼ _vvxðiÞ; _vvyðiÞ; _vvzðiÞ; _!!xðiÞ; _!!yðiÞ; _!!zðiÞÞ
� � ð6Þ

where ! is the angular velocity. P i are the generalized contact loads, including force
vectors and moment vectors, F i the generalized external loads and C ivi the mass
proportional (background) damping forces. The generalized contact loads vector is
written as:

PT
i ¼

Xnc

j¼1

Fj;i
x ;
Xnc

j¼1

Fj;i
y ;
Xnc

j¼1

Fj;i
z ;
Xnc

j¼1

Mj;i
x ;
Xnc

j¼1

Mj;i
y ;
Xnc

j¼1

Mj;i
z

" #
ð7Þ

where Fj;i
x , Fj;i

y and Fj;i
z are the scalar components of the contact forces exerted on the ith

particle by the jth particle, and Mj;i
x , Mj;i

y and Mj;i
z are, similarly, the scalar components

of contact moments. nc denotes the number of contacts for the ith particle.
Equation of motion (3) is integrated in time using the central difference method due

to its simplicity (no need for iteration and consistent tangent) and second-order
accuracy. Assuming mass proportional damping of the form C ¼ �1M , with
proportionality parameter �1, the following midstep velocity update is obtained as:
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vnþ1=2 ¼
1� �1�t=2

1þ �1�t=2
vn�1=2 þ

1

1þ �1�t=2
�tM �1½F n � P n� ð8Þ

where n denotes the nth time, and �t is the time step. Equation (8) can be evaluated at
any time n to obtain the midstep velocity vnþ1=2 , and then the displacement.

The theoretical critical time step obtained from linear stability analysis can be used
to estimate the time step as:

�t < 2=!max ¼ 2

ffiffiffiffi
m

k

r
ð9Þ

where m/k is a minimum, resulting from the combination of smallest particle mass and
largest interparticle stiffness at contact. It is noted from Equation (29) that this
interparticle stiffness is a variable depending on particle overlap magnitude. Actual
time step could be a fraction of this number, for example, 1-10 percent adopted for
dynamic simulations in this paper.

When the method is used to solve static or quasi-static problems, a dynamic
relaxation (DR) procedure (Key, Stone, and Krieg, 1980; Underwood, 1983) is performed
to achieve convergence to the static solution. DR is often used in explicit codes to obtain
static or quasi-static solutions. The basic idea is to apply the load very slowly and solve
the dynamic system equations with enough damping so that oscillations are
minimized. In DR, only P and F must represent the physics, while C and M are
fictitious values such that the static solution is obtained in a minimum number of steps.
DR is applicable, in general, for quasi-static loading of dense granular materials, in
which inertial particle forces and moments are negligible.

The mass proportional viscous damping C ¼ �1M can be referred to background
damping, which is sometimes necessary to apply to non-contacting particles to
dissipate their energy during DR. Aside from the background damping, interparticle
contact damping is essential to model the mechanical interaction between particles.
This is especially true for dynamic problems where interparticle collisions dominate
the kinetic energy dissipation. For physical dynamic problems, we apply only
interparticle normal contact damping and tangential friction without involving any
background damping. The contact interface is illustrated in Figure 1, characterized by

Figure 1.
Model of contact interface
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the normal and tangential stiffness kn and kt , respectively, friction coefficient �, and the
normal contact damping coefficient cr .

The normal contact damping force between particles is assumed to be of viscous
type and given by:

F d ¼ crvr ð10Þ

where vr is the normal relative velocity vector of the centers of the two particles in
contact, defined by:

vr ¼ ð _uu2 � _uu1Þ � n ð11Þ

where n is the contact normal.
The normal damping coefficient cr (Onate and Rojek, 2004) can be taken as a

fraction of the critical damping Ccr for the system of two rigid bodies with masses m1

and m2, connected with a spring of stiffness kn (Taylor and Preece, 1992):

Ccr ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1m2kn

m1 þm2

s
ð12Þ

cr ¼ �Ccr ð13Þ

where � is called damping ratio, which is usually 1-5 percent. In the tangential direction
of contact between particles, friction will dissipate energy.

In the tangential direction of the contact between particles, friction plays the role to
dissipate energy. Usually, it is necessary to apply damping for the case of static friction
and the tangential critical damping can be similarly given by:

Ccr ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1m2kt

m1 þm2

s
ð14Þ

2.2 Contact geometry of ellipsoids
Ellipsoidal particles are chosen as the particle shapes in the 3D DE computation. First,
they can represent a wide range of 3D objects: spherical, bulky, platy or even needlelike,
as shown in Figure 2. Second, their contact geometries can be obtained mathematically
using closed-form equations. Third, the most important, for granular materials with
non-spherical interlocking grains (e.g. not spherical glass beads), non-physical particle
rotations can be avoided that lead to low shear resistance (Wang et al., 1999). Some
researchers have added a rolling friction factor (Vu-Quoc et al., 2004) to alleviate this
non-physical low shear resistance representation when using spherical particles. We
choose to use a more physically-representative particle shape: an ellipsoidal particle.

To calculate the contact properties between two generic ellipsoids, Lin and Ng
proposed two different contact resolution algorithms (Lin and Ng, 1995). One is based
on a geometric potential concept resulting in a 6th order polynomial equation and the
other on a common normal concept resulting in a set of six equations. By comparison
with analytical results on two spheres, they concluded that the geometric potential
algorithm has a better accuracy and efficiency than the common normal one although
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it does not guarantee that the surface normals at the two contact points on each
ellipsoid are parallel to each other. This paper follows the algorithm based on
geometric potential.

An ellipsoid in 3D space is determined by the following parameters: position of the
center (x0, y0, z0), length of three axes (a, b, c) and orientation of the three axes, which is
expressed as three vectors of direction cosine (l1, m1, n1), (l2, m2, n2), (l3, m3, n3).
Among the last nine parameters only three of them are independent.

In general, the algebraic expression for the surface of an ellipsoidal particle in 3D
Cartesian coordinate space is shown as follows:

fi ¼ ai
1x

2 þ ai
2y

2 þ ai
3z2 þ ai

4xyþ ai
5yzþ ai

6zxþ ai
7xþ ai

8yþ ai
9zþ ai

10 ¼ 0; i ¼ 1; 2

ð15Þ

where i is the particle index of one of two particles in a contact pair, and a1 to a10 are the
ten coefficients describing a particle surface.

Figure 3 illustrates contact between two ellipsoids. Point P1 is a point on the surface
of particle 1 and it has the deepest penetration into particle 2, and point P2 is a point on
the surface of particle 2 and has the deepest penetration into particle 1. The penetration
between two particles is defined as the length of line segment between points P1 and P2.

To acquire the coordinates of point P1, the following extreme value problem is
introduced to seek f2’s minimum with a constraint condition f1 ¼ 0:

Lðx; y; z; �Þ � f2ðx; y; zÞ þ �f1ðx; y; zÞ ð16Þ

where f1 and f2 are functions of the surfaces corresponding to Equation (15), and � is
the Lagrange multiplier (Sokolnikoff, 1939).

To solve the extreme value problem, the vanishing of the total differential is the
necessary condition:

Figure 2.
Various shaped ellipsoids
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@Lðx; y; z; �Þ
@x

¼ 0;
@Lðx; y; z; �Þ

@y
¼ 0

@Lðx; y; z; �Þ
@z

¼ 0;
@Lðx; y; z; �Þ

@�
¼ 0

ð17Þ

These PDE’s lead to a sixth order polynomial equation of � (Gong, 2001). When � is
determined, the spatial coordinate of point P1 can be acquired. A similar procedure can
be used to obtain point P2.

As there is no analytical root-finding solution for a sixth order polynomial, a robust and
precise numerical procedure must be selected. According to Numerical Recipes (Press,
2007), several polynomial root-finding algorithms are available, such as Muller’s method,
Laguerre’s method and eigenvalue method. The basic idea of eigenvalue method is that the
eigenvalues of a matrix A are the roots of the ‘‘characteristic polynomial’’
PðxÞ ¼ det½A� xI � such that some efficient eigenvalue methods can be utilized to find the
roots of arbitrary polynomials. The eigenvalue method is selected in this research and is
proved to be quite robust in detecting contact between any two ellipsoidal surfaces.

For ease of numerical implementation, we assume the contact area is circular, which
is reasonable for stiff particles. The contact geometry between two ellipsoids can be
approximated by assuming two osculating spheres passing through the contact point
on each ellipsoid surface, which is shown in Figure 3.

An ellipsoidal surface from Equation (15) can be regarded as a generic space
surface:

z ¼ f ðx; yÞ ð18Þ

The following variables are introduced:

r ¼ @2z

@x2
; s ¼ @2z

@x@y
; t ¼ @2z

@y2
; p ¼ @z

@x
; q ¼ @z

@y
; h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2 þ q2

p
ð19Þ

such that the second fundamental coefficients are expressed:

L ¼ r

h
; M ¼ s

h
; N ¼ t

h
ð20Þ

Figure 3.
Contact between two
ellipsoidal particles
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There are directions at a surface point P along which the normal curvature at P has
maximum or minimum values, namely, principal directions at P. The principal
curvatures at P are the normal curvatures at P along the principal directions. The
principal curvature radii are given by the roots of a quadratic equation (Lipschutz,
1969; Somasundaram, 2004):

ðrt � s2ÞR2 þ h½2pqs� ð1þ p2Þt � ð1þ q2Þr�R þ h4 ¼ 0 ð21Þ

where the two roots are denoted by R1 and R2. The mean curvature radius of the
osculating sphere is given by (Lipschutz, 1969):

R ¼ 2R1R2

R1 þ R2
ð22Þ

2.3 Constitutive contact relationships
Particle contacts are assumed to be elastic and frictional such that elastic contact
theory can be utilized. The Hertz-Mindlin model (Hertz, 1882; Mindlin, 1949) is a widely
used particle contact constitutive model in DE models, and includes nonlinear
elasticity and slip. Sometimes a simple Coulomb friction model can be employed to
evaluate tangential stick-slip conditions.

Hertz (1882) assumed the following conditions:

(1) Contact shape can be represented by a quadratic surface.

(2) Solution for a semi-infinite elastic half space with a point force BC is applicable
at contact.

(3) The two particle surfaces are perfectly smooth.

Under these conditions the distribution of contact pressure for two spheres is:

pðrÞ ¼ 3P

2�a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r

a

� �2
r

ð23Þ

where P is the normal force, a is the radius of contact area, and r is the contact surface
coordinate. Figure 4(a) illustrates the contact model between two spheres, such that:

a ¼ 3PR0

4E0

� �1=3

¼ ð�R0Þ1=2 ð24Þ

1

R0
¼ 1

R1
þ 1

R2
ð25Þ

1

E0
¼ 1� �2

1

E1
þ 1� �2

2

E2
ð26Þ

where R1 and R2 are the radii of the two spheres, E1, E2, �1, �2 are Young’s modulus and
Poisson’s ratio, respectively. The relationship between normal load P and normal
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displacement � is:

� ¼ R
�1=3
0

3P

4E0

� �2=3

ð27Þ

P ¼ 4

3
E0R

1=2
0 �3=2 ð28Þ

and the normal stiffness kn is

kn ¼
dP

d�
¼ ð6PR0E2

0 Þ
1=3 ð29Þ

History dependence of tangential displacement on normal and tangential loads was
studied by Mindlin and Deresiewicz for various cases (Mindlin, 1949; Mindlin et al.,
1952; Mindlin and Deresiewicz, 1953) and they drew the conclusion that ‘‘Not only do
the changes in stresses and displacements depend upon the initial state of loading, but
also upon the entire past history of loading and the instantaneous relative rates of
change of the normal and tangential forces’’. Ten different cases with complicated
conditions and expressions for the tangential stiffness were presented (Mindlin and
Deresiewicz, 1953). However, we only implement three of them where the normal force
is held constant because it is difficult to keep track of every history state in order to
distinguish all the ten cases when the DEM performs calculation of hundreds of
thousands of steps.

(1) No slip. If there is no slip on the contact surface, the relative tangential
displacement is proportional to the applied tangential force:

Figure 4.
Hertz-Mindlin contact
model
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	 ¼ 2� �
4Ga

T ð30Þ

where T is the tangential force, and G is the shear modulus.

(2) Partial slip. In order to avoid a singularity in traction (which would be
unphysical), slip is allowed at non-zero tangential force. Slip progresses radially
inward from the edge of the contact area, producing a slip-stick region as
shown in Figure 4(b).

The radius of the stick portion is:

c ¼ a 1� T

�P

� �1=3

ð31Þ

where � is the intersphere constant coefficient of static friction.
The relationship between the relative tangential displacement 	 and

tangential force T is:

	 ¼ 3ð2� �Þ�P

8Ga
1� 1� T

�P

� �2=3
" #

ð32Þ

T ¼ �P 1� 1� 8Ga	

3ð2� �Þ�P

	 
3=2
( )

ð33Þ

The tangential stiffness of the contact is:

kt ¼
dT

d	
¼ 4Ga

2� � 1� 8Ga	

3ð2� �Þ�P

	 
1=2

ð34Þ

(3) Decreasing tangential force. When tangential force decreases from a peak value
Tsð0 < Ts < �PÞ, the tangential stiffness of the contact is different from that in
the case of an increasing tangential force (i.e. different loading and unloading
response). In this case:

	 ¼ 3ð2� �Þ�P

8Ga
2 1� Ts � T

2�P

� �2=3

� 1� Ts

�P

� �2=3

�1

" #
ð35Þ

T ¼ Ts � 2�P 1�
ffiffiffi
2
p

4
1þ 1� Ts

�P

� �2=3

þ 8Ga	

3ð2� �Þ�P

" #3=2
8<:

9=; ð36Þ

and the tangential stiffness of the contact is:

kt ¼
dT

d	
¼ 2

ffiffiffi
2
p

Ga

2� � 1þ 1� Ts

�P

� �2=3

þ 8Ga	

3ð2� �Þ�P

" #1=2

ð37Þ
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2.4 General features of ELLIP3D
ELLIP3D is a 3D DEM simulation code written in Cþþ with object-oriented design. It
calculates particle motions in terms of translational and rotational degrees of freedom
based on the second law of Newton, described in Equations (1) and (2). Particle rotations
are calulated in LCS and converted into GCS. Particle contact resolution algorithm is
based on the geometric potential concept, and an eigenvalue method is used to seek roots
for the resulting sixth order polynomial. In determining the principal curvature radii at an
ellipsoidal surface point through Equation (21), singularity along ellipsoid equators is
carefully avoided by coordinate switching. Both dynamic and quasi-static simulations are
performed, and the code is proved to be robust. The average number of contact resolution
calculations per second is approximately 104/sec on a single AMD 3.2 GHz CPU.

3. Discrete element method simulation examples
This section demonstrates numerical DEM examples to verify the ellipsoidal contact
detection algorithm, interparticle constitutive behavior, and quasi-static and dynamic
simulation capabilities. The parameters for the particles are for typical quartz sand.
They are listed in Table I along with other computational parameters.

The translational energy, rotational energy, kinetic energy and gravity potential
energy of an ellipsoidal particle are defined as follows:

Etrans ¼
1

2
mv2 ð38Þ

Erota ¼
1

2
ðI�xx!2

�xx þ I�yy!
2
�yy þ I�zz!

2
�zzÞ ð39Þ

Ekin ¼ Etrans þ Erota ð40Þ

Epot ¼ mgðz� zref Þ ð41Þ

where �xx, �yy, �zz denote the LCS embedded in the ellipsoidal particle, z denotes the particle
centroid height and zref the reference level. These are calculated as post-processing for
each time step to better understand how energy is evolving during the DE simulations.
The balance of energy is not solved.

Table I.
Parameters of particles
and numerical
computation

Young’s modulus, E (Pa) 2.9 � 1010

Poisson’s ratio, � 0.25
Specific gravity, Gs 2.65
Interparticle coefficient of friction, � 0.2-0.7
Interparticle contact damping ratio, � 1-5%
Particle radii, m 0.001-0.005
Background damping ratio 0 or DR
Time step, �t (sec) 5.0 � 10�6-5.0 � 10�8

Notes: Time step covers a large range due to different simulation configurations such as particle
size and dropping height
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3.1 Centric impact
In this test, an upper particle is allowed to fall freely through gravity and impact
centrically upon a lower particle fixed on a table, shown in Figure 5(a). No background
damping or interparticle damping is applied so the energy of the system should be
conserved. Figure 5(b) illustrates the kinetic energy of the system during the impact,
which clearly describes the cyclic process of falling, impacting and rebounding. The
vertical line reflects the instant of impact between two particles, whose details are
illustrated in Figure 5(c). If the time step �t is small enough, the line is able to reach the
abscissa, capturing the ‘‘exact’’ instant when the top particle’s velocity becomes zero. If
�t is larger, conservation of kinetic energy is lost due to inaccuracy of the time
integration (assuming it is still small enough to ensure stability of the integration).

Interparticle contact damping influences the energy dissipation substantially. With
5 percent contact damping applied, the system dissipates energy and reaches static

Figure 5.
Two particle centric

impact
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equilibrium (the top particle stays still on top of the bottom one) quickly in
approximately 2 s, shown in Figure 5(d). A small amount of interparticle contact
damping (5 percent in the numerical examples) can increase the stable time step for
dynamic simulation. For dense, many-particle simulations with significant
interparticle sliding, friction will play a dominant role in energy dissipation.

3.2 Tangential behavior at contact
When modeling natural granular materials like sand, friction parameters along with
particle shapes (there could be a distribution across a sample) will dictate the
mechanical response. Oftentimes, friction accounts for particle surface roughness and
some shape angularity that otherwise would be too computationally intensive to
resolve spatially for many particle systems (i.e. an ellipsoidal or polyhedral particle
shape can only account for so much natural grain angularity). In this test of tangential
behavior, a top particle is squeezed upon a bottom one using a constant force N,
whereas the bottom one is fixed, disallowing any translational or rotational degree of
freedom (DOF), illustrated in Figure 6. A moment is then applied on the top particle,
driving it to rotate. The moment is increased and then decreased, allowing the top
particle to experience loading and unloading path in the tangential direction. The
interparticle coefficient of friction, �, is assumed to be 0.5.

In Figure 7, the relationship between tangential force and tangential displacement
under the constant normal force is illustrated. Figure 7(a) represents the case where the
tangential force does not exceed �N and only slip occurs while Figure 7 (b) represents
the case where the tangential force exceeds �N and slide occurs.

Linear model and Mindlin model are compared for both adhered/slip and slide
situations. On the basis of the assumption that the tangential stiffness of the linear
model be evaluated as the no-slip case of Mindlin’s equation, the two models only show
a minor difference if incremental method is used in calculating the tangential stiffness,
because the shear moduli of the two particles are large.

Figure 6.
Particle tangential
behavior test
configuration
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3.3 Rolling and sliding
Rolling and sliding between particles are of great interest in investigating the behavior
of frictional granular material. In this test, two particles are placed in equilibrium
inside a rigid wall container, illustrated in Figure 8(a). The left wall of the container is
removed suddenly and the two particles start to move dynamically.

The simulation indicates that the whole process can be divided into five stages:

(1) two particles reach initial static equilibrium;

(2) the left wall is removed and two particles start to move;

(3) two particles roll upon each other;

(4) two particles slide between each other; and

Figure 7.
Tangential force-

displacement relationship
under a constant normal

force using linear and
Mindlin model

Figure 8.
Rolling and sliding test
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(5) two particles detach, as shown in Figure 8 (b).

The influence of coefficient of friction is tested: if � ¼ 0, no rotation occurs; if � > 0, the
two particles roll and slide against each other. A larger value of � results in a larger
angle of rotation of the top particle.

3.4 Obliquely oriented ellipsoids in contact
Two obliquely oriented ellipsoids are placed in a rigid wall container to track their
motion, contact detectio and energy process. The container size is 10 � 10 � 10 mm.
The two particles are 4.0 � 3.0 � 1.5 mm and 4.0 � 2.0 � 1.5 mm in radius,
respectively. The interparticle and particle-wall coefficients of friction are assumed to
be 0.5 and no background damping is applied. As shown in Figure 9(a), the bigger
particle lies on the bottom of the container and the smaller particle drops from a short
height to impact the bigger one. Figure 9(b) captures a stage when the two particles are
in contact with each other. The two particles translate, roll and slide against each other
until both stay at rest finally, i.e. the smaller particle is ‘‘locked’’ between the bigger
particle and container walls, shown in Figure 9(c). During this process, the contact

Figure 9.
Two obliquely oriented
ellipsoids in contact



www.manaraa.com

Modeling
of granular

materials

535

points keep changing (the dynamic nature of contact is indicated by the peaks and
valleys in energy curves) and ELLIP3D provides a robust algorithm to keep track of
them. The energy process of this two-particle system is plotted in Figure 9(d). It can be
seen that translational and rotational energy are of the same magnitude in this
simulation, and that both normal and tangential interaction between a pair of particles
play important roles in dissipating energy.

3.5 Gravitational deposition
As shown in Figure 10(a), a layer of various-sized ellipsoidal particles are released from
a certain height into a rigid wall container. The orientations of the particles are
randomly generated.

Figure 10(b) illustrates the translational and rotational kinetic energy process
during single layer deposition in terms of the following parameters: � ¼ 5 percent,
� ¼ 0.5, �t ¼ 5 � 10�7 s. It shows that the initial kinetic energy is dominated by
translational motion as the particles fall, and then rotation is observed when they
contact frictionally at 0.1 s.

Multiple layers of uniform sized ellipsoidal particles are released from a certain height
into a rigid flat wall container. The container walls are assumed to have the same friction
as between particles. The initial state is shown in Figure 11(a): the orientations of the
particles are randomly generated and each particle does not contact any others. The
particles begin to deposit through gravitational force with � ¼ 5 percent and � ¼ 0.5.

It is worth noting that a significant difference exists between multiple layer
deposition and a single layer deposition. These simulations are run without
background damping (�1 ¼ 0). In the multiple layer deposition, the particles cannot
rebound as freely as those in the single layer deposition in that motion of the lower
particles are restrained by the upper particles, i.e. there are many more particle
contacts and it tends to result in smaller overlap between particles in an average sense.

Figure 10.
Single layer dynamic

deposition
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From Equations (29) and (9), it can be seen that a smaller penetration between particles
results in a smaller normal stiffiness, which in turn leads to a larger allowable time
step. Based on this phenomenon, a larger time step can be employed in the
computation, which is valuable for simulations with a large amount of particles.

Figure 11.
Multiple layers dynamic
deposition
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Energy curves of multiple layer deposition are illustrated in Figure 11(c). Compared to
Figure 10(b), it can be observed that the particles move much less intensively in multiple
layer deposition. Only the top layer of particles are able to rebound freely, and it takes
additional time for those particles to come to rest. The deposited final steady state
configuration shown in Figure 11 (b) is used for the following quasi-static simulations.

3.6 Oedometer compression
It should be pointed out that:

(1) All the oedometer compression, triaxial compression and pile penetration are
quasi-static simulations using DR method, and the pile penetration uses
particle mass scaling and gravity scaling.

(2) The stress on each wall of the container is calculated by averaging particle-wall
contact forces over the wall area, which allows a precise equlibrium control
during the simulation.

An oedometer compression (uniaxial strain) is simulated on the sample deposited by
gravity in Figure 11(b) with loading-unloading-reloading path. Figure 12(a) illustrates
the relationship between axial stress/lateral stress and volumetric strain during the
test. The coefficient of lateral earth pressure, K0 ¼ 
lateral=
axial, is plotted in
Figure 12(b). It is observed that K0 drops from the initial value 1.0 and stays stable at
around 0.45 in the test, which is a typical average value for normally consolidated
sands. During the path of unloading-reloading, it increases and decreases
correspondingly and then goes back to 0.45. It is interesting that K0 goes up to 1.13 in
the unloading process, which means axial stress is lower than the lateral stress at that
instant. The particles may be laterally ‘‘locked’’ by the container when the axial stress
is released. A significantly lower K0 during reloading than during unloading has been
found in laboratory tests on a uniform medium sand (Al-Hussaini and Townsend,
1975), which is replicated qualitatively in this numerical test.

3.7 Triaxial compression
Triaxial compression tests are conducted with various confining pressures, which
covers a wide range from 100 to 3,500 kPa. The confining pressure is applied on the six

Figure 12.
Oedometer compression

with load-unload-
reload path
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boundaries of the specimen and then displacement-controlled BCs are applied at the
top and bottom platens. Figure 13 illustrates cross-sectional view of the specimen,
where the deformation is demonstrated clearly as well as the particle contact state.

Figure 14(a) and (b) illustrate the stress-strain relationship and volumetric behavior
in the triaxial compression simulation with various confining pressures, respectively. It
displays a trend of dilatancy for an initially dense sample: the volume of the specimen
contracts first and then expands as axial strain increases. Qualitatively, it agrees with
the triaxial test results (Jernigan, 1998) where 4-8 mm Sweden Ballast was used as
oversized granular soils.

Figure 14(c) displays the curves of average coordination number along with the
axial strain change. They look like typical stress-strain curves of dense sand in triaxial
test. Coordination number increases during compaction and decreases during dilation.
Compared with Figure 14(a), the coordination number varies in advance of the deviator
stress.

The relationship between void ratio and deviator stress is illustrated in Figure 14(d),
which demonstrates dilatancy. The lower confining pressure specimens dilate more
than the higher confining pressure ones. Qualitatively it agrees well with laboratory
curves (Hirschfeld and Poulos, 1963).

3.8 Pile penetration with fixed boundary
A simplistic pile penetration test is simulated quasi-statically to demonstrate boundary
effects. The pile is modeled using a relatively large ellipsoidal particle, and the boundaries
are composed of spatially fixed spherical particles, illustrated in Figure 15(a) and (b). As
shown in Figure 15(c), three different-sized containers are used, number of particles being
2,760, 4,260 and 6,088, respectively. The dimension of free particle deposited in the
container is 2.5 � 2.0 � 1.5 mm in radius and the three container horizontal dimensions
are 39.6 � 39.6 mm, 49.5 � 49.5 mm and 59.4 � 59.4 mm, respectively. The height of
deposited particle assembly inside the container is 83 mm.

The vertical force-displacement curves are plotted in Figure 16 for the pile particle.
It can be found that the pile force increases as penetration increases. For a smaller
container, the force has a larger value because of the boundary effect, as expected.

Figure 13.
Cross-sectional view of
triaxial compression
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4. Discretre element/finite element facet coupling
To solve fracture or penetration mechanics problems computationally efficiently with
higher-fidelity materials models, various multiscale approaches have been developed.
These multiscale methods couple particle methods to continuum methods via an
overlapping, or ‘‘hand-shaking’’, region. Examples of such approaches have been
demonstrated for coupled atomistic-continuum regions (Wagner and Liu, 2003; Xiao
and Belytschko, 2004; Klein and Zimmerman, 2006), to name a few.

The differences between atomistic-continuum coupling and granular-continuum
coupling should be noted:

. MD simulations are widely used because of the availability of accurate
interatomic potentials for lattice-structured materials. Granular particles interact
with each other through contact and friction, making such potentials not
applicable to granular materials.

Figure 14.
Triaxial compression
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. Granular materials are generally ‘‘frictional’’ materials (assumed cohesionless).
The assemblies of granular materials deform with the change of BCs. If no BC is
applied (i.e. unconfined), the assemblies could become individual particles
without any contact interaction (i.e. falling or floating in space) or obtain an
angle of repose under gravity loading. Due to their ‘‘frictional’’ nature, particle
shape and grain size distribution influence the mechanical behavior

Figure 15.
Cross-sectional view of
pile penetration
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dramatically. For lattice-structured materials, they have regular atomic structure
and can retain their shape without confinement.

. Rotation and shape of granular particles play an important role in determining
the deformation and strength of assemblies. This is not the case with atoms in
MD (although structure of a molecule will be important in MD).

. The reduction of MD DOF in atomistic-continuum coupling is made possible as a
result of the periodic nature of crystal lattices. Collections of atoms called the unit
cell is repeated in exactly the same arrangement over and over throughout the
entire material; this is not true with granular materials, which are generally
highly heterogeneous at their particle-scale.

. Granular materials may undergo large shear deformation and/or particle flow
which prevents a FE mesh from covering the entire domain in a simulation (large
distortion of FE mesh requires adaptive re-meshing). For example, when a
square pre-stressed concrete pile is driven 5 m vertically into a sand foundation,
the pile displaces the sand media with its body occupying physical space, which
would cause a FE mesh covering the penetration region to be re-meshed many
times (something to be avoided for computational efficiency). Within that
domain, pure DE simulation could be used to resolve properly the underlying
physics, while outside that domain FE simulation can be adopted for proper BCs
on the DE domain, and computational efficiency.

Figure 16.
Pile force-displacement

curves with different
sized containers
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On the basis of above comparison and analysis, a simple granular-continuum coupling
scheme is proposed initially, illustrated in Figure 17. The FE mesh does not cover the
entire domain. Instead, the FE region and DE region only overlap through a single layer
of particles. This layer of particles is embedded on the surface of the FE domain with
centroids constrained to FE facets and deform with FE mesh. We call these particles
‘‘ghost’’ particles, as done in atomistic-continuum coupling methods. The hand-shaking
area is downgraded to a layer of ghost particles, and there is no overlap, thus providing
only a preliminary code communication between ELLIP3D and TAHOE. Theoretically,
the ghost particles can comprise multiple layers and extrude into/overlap with the FE
mesh, but this is left for future work (Regueiro, 2007; Regueiro and Yan, 2009). No energy
partitioning is currently considered. Only force and kinematics are communicated
between the FE and DE regions through the single layer of ghost particles constrained to
follow the motion of the FE facets to which they are tied.

Depending on the FE type, the ghost particles may or may not maintain rotational
DOF. Ideally, when a micropolar or micromorphic continuum model (Regueiro, 2009) is
used within the FE region, the ghost particles will have rotational DOF. If conventional
FEM is adopted (like in this paper), the ghost particles have constrained rotational
DOF. Free particles in the DE domain carry both translational and rotational DOF.

The computational framework involves a two-way exchange of information: free
particles in the DE simulation contribute to the boundary force in the FE domain
through ghost particles, the FE domain provides information needed to compute the
BC on the free particles through ghost particles as well. The granular and continuum
scales run simultaneously and exchange relevant information dynamically.

Figure 17.
Schematic illustration of
simple granular-
continuum coupling
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The ghost particles are embedded on the surfaces of the FE domain and transfer
forces from DE domain to FE domain through the coupled FE facets. The ghost
particles can be placed in such a manner that their centroids are exactly located on the
surface FE facets. As ghost particles are discrete in space, the forces are discrete in
space as well. Each force acts like a point load on the FE mesh, not necessarily acting at
a FE node. When a point force P acts in the interior (including boundary) of the
element domain, the relation between the distributed force b(x) at point x and the point
force can be denoted mathematically as:

bðxÞ ¼ P	ðx � aÞ ð42Þ

where 	ðx � aÞ is the Dirac delta function and x ¼ a the location of force action P .
The Dirac delta function has the property that for any vector function g (x):ð

�

gðxÞ	ðx � aÞdx ¼ gðaÞ; a 2 �
0; otherwise

�
ð43Þ

Thus, the external nodal forces on an element e arising from a point force P at a can be
obtained by:

f e ¼
ð

�

N eTðxÞbðxÞdv

¼
ð

�

N eTðxÞP	ðx � aÞdv

¼ N eTðaÞP ; a 2 �

0; otherwise

( ð44Þ

where N e is the matrix of FE shape functions for element e. Extending it to all FE over
the entire domain we have:

f ¼ N TP ð45Þ

When the FE mesh deforms, the ghost particles move as well, maintaining their
centroids on the surface of the FE mesh. Usually, the ghost particles are initially setup
such that their centroids coincide with FE mesh surface. Their centroid locations need
to be mapped from global coordinates to local element natural coordinates using a
Newton-Raphson iterative method. Once the natural coordinates are determined, the
locations of ghost particles can be evaluated using the following relationship through
shape functions NbQQD

during the subsequent simulation:

bQQ ¼ NbQQD
D ð46Þ

where cð�Þð�Þdenotes prescribed particle DOFs.
The following list summarizes the algorithm to implement the granular-continuum

coupling scheme:

. Initialize DE and FE domain.

. If simulation steps are reached, stop; otherwise continue.
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. Run DE simulation with ghost particles at boundary and calculate forces that
each ghost particle is subjected to.

. Apply ghost particle forces to FE using f ¼ N TP .

. Run FE simulation.

. Update ghost particle motion using bQQ ¼ NbQQD
D.

. Return to Step 2.

In practice, DE code ELLIP3D is wrapped and integrated into FE code TAHOE
(tahoe.ca.sandia.gov) using object-oriented programming methodology for the
algorithm implementation.

5. Discrete element/finite element coupling simulation examples
5.1 Benchmark test
As a benchmark, an elastic cube (E ¼ 5.0 � 107 N/m2, � ¼ 0.2) modeled with eight
trilinear hexahedral elements is studied with two cases: the first is to apply a vertical
point force directly at the center of its top surface; the second is to place four ghost
particles around its top central node and use a free particle to apply force to the four
ghost particles. The dimension of the cube is 0.2 m. The radii of the spherical ghost
particles and the free particle are 1.5 and 3.0 mm, respectively, see Figure 18. The

Figure 18.
A benchmark test on
cube deformation
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magnitudes of the vertical point force and the free particle gravity are assumed to be
the same, 1.0 � 105 N.

The two cases give close results as shown in Figure 18(a) and (b). The difference can
be explained: in the first case, the point force is undertaken by the top central node,
while in the second case the gravity of the free particle is undertaken by the top central
node and its surrounding nodes on the top four elements through the concentrated FE
facet particle force distribution in Equation (44).

When the four ghost particles move closer to the top central node, the result gets
closer to that of the single point load. As the four ghost particles are all placed exactly
at the top center (and thus they are completely overlapped), the deformation of the cube
converges to the same result as that resulting from a single point force.

5.2 Ghost particles motion
It is important to guarantee that ghost particles move with the deformation of an FE
mesh. A test with 64 ghost particles and 9 free particles is carried out to examine ghost
particle movement. As the cube deforms, it is observed that ghost particles move with
the FE facets, captured in Figure 19.

5.3 Pile penetration with coupled FE facets
The particles from the pile penetration example with smaller ‘‘container’’ are combined
with a FE domain, shown in Figure 20.

As the pile is driven into the free particles, the ghost particles are squeezed
outwards towards the FE domain. Figure 21 depicts the pile-induced displacement field
of all ghost particles (rotations fixed because FE continuum is non-polar). It is
noteworthy that the ‘‘container’’ formed by ghost particles swells at lower part, similar
to the influence region for pile excitation problems (Ashlock, 2006).

To examine the effect of DE-FE coupling on force-displacement curves of pile
penetration, the small container curve and large container curve in Figure 16 are
plotted again, together with the curve obtained from small container with DE-FE
coupling, shown in Figure 22. It is observed that the pile force of the small container
with DE-FE coupling can be tuned to match the larger container with no coupling, by

Figure 19.
Details of ghost particles

moving with FE
deformation
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adjusting the elastic compliance of the FE continuum surrounding the container. The
boundary effect difference is shown in Figure 16 can be partially or completely
eliminated by applying a more robust DE-FE coupling technique in future work,
similar to the atomistic-continuum coupling methods, but accounting for differences

Figure 20.
3D view of the DE and
FE domain
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with granular materials (see discussion at beginning of section 4). Such work is
ongoing.

6. Conclusions
The development of a 3D ellipsoidal DE code ELLIP3D enables us to study the
fundamental mechanical behavior at particle contact as well as simulate granular
particle assembly response under various conditions. It is found that a linear model
and Mindlin’s model only show a minor difference under the small contact deformation
assumption for stiff particles. Results from oedometer and triaxial compression agree
qualitatively with laboratory data.

Coupling DE to FE domains to reduce computational cost is realized through a layer
of ‘‘ghost’’ particles embedded on surface FE facets. Pile penetration simulations show
that the artifical boundary effect can be alleviated by using the coupled FE facets with
tuned FE continuum elastic compliance. The granular-continuum coupling technique
and its extension to more robust overlapping bridging scale methods in future work
can be expected to be an effective method in providing a nearly seamless DE-FE
transition and lowering computational cost associated with granular material/
deformable solid body interfaces, such as encountered, for example, for granular soil-
tool, tire, penetrometer, pile interfaces.

Figure 21.
Pile-induced displacement

field of ghost particles
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